A

AD-A242 671
AR

NAVAL POSTGRADUATE SCHOOL

Monterey , California
u TiC.

E BN el 3

o
. \Lv PRV

C

THESIS

THE IMPACT OF VERBAL REPORT PROTOCOL
ANALYSIS ON A MODEL OF HUMAN-COMPUTER
INTERFACE COGNITIVE PROCESSING

by
Barbara L. Treharne

March 1991

Thesis Advisor: Kishore Sengupta

Approved for public release; distribution is unlimited.

31-16
L III’I!H’ IHI I J’!II’

@

D

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OM8 16 0703 0188
1a REPORT SECURITY CLASSIFICATION tb RESTRICTIVE MARKNGS
UNCLASSIFIED
23 SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION - AVAILABILITY OF REPQR™
Multiple Sources Approved for public release; distribution
2b DECLASSIFICATION/ DOWNGRADING SCHEDULE is unlimited.
(OADR)
4 PERFORMING ORGANIZATION REFORT NUMBER(S) S MONITCRING ORGANIZATION REPORT NUNMBLR, S,
6a NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL 7a NAME OF MONITORING ORGAN ZAT.ON
(if applicable)
Naval Postgraduate School 367 Naval Postgraduate School
6¢. ADDRESS (City, State, and Z2IP Code) 7b ADDRESS (City. State. and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL [9 PROCUREMENT INSTRUMENT IDENTIFICATION NL"/A8ER
ORGANIZATION (1f applicable)
8c. ADDRESS (Crty, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROECT TASK NORK UNIT
ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

THE IMPACT OF VERBAL REPORT PROTOCOL ANALYSIS ON A MOD -
e e chanoa, EL OF HUMAN-COMPUTER INTERFACE

12 PERSONAL AUTHOR(S)
Treharne, Barbara L.

732 TYPE OF REPORT T35 TIME COVERLD T3 DATE OF REPORT (Year Month. Day) 115 PAGE COun-
Master's Thesis FROM T0 March 1991 104

16 SUPPLEMENTARY NOTATION

The.views expressed in_this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

17 COsSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identity by block number)

FIELD G - . L
' ROUP SUB-GROUP Human-Computer Interaction, User Interface, Cognitive
Complexity, Verbal Protocols

19 ABSTRACT (Continue on reverse if necessary and dentify by block number)
This exploratory study used the "think-aloud" protocol to demonstrate the effectiveness of
Kieras and Polson's Goals, Operators, Methods and Selection Rules and the Cognitive
Complexity Model. An experiment comparing the cognitive processes of users on two file
management interfaces, a Command Language and Direct Manipulation interface, was con-
ducted. The think-aloud process was chosen as the methodology for conducting this experi-
ment because of its insights into the user's perceptions of both the task and device
representations. The experimental results provide implications for the study of cognitive
processes--the nature of the interface design influences the users' mental models of a
system, which has a direct affect on the users' performance on a given interface. This
methodology also provides an evaluation technique which may improve the design process of
the user interfaces. Finally, the results suppcrt the think-aloud protocol as an effect-
ive evaluation tool of user interface designs.

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
B uncLassiriep/unumiTed [same as ReT Oonc users | Unclassified
228 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OF8iCE SV
Kishore Sengupta (408) 646-3212 AS-SE
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY (LASSF CATCN N Tor 2 @

S/N 0102-LF-014-6603 Unclassified

i

Approved for public release; distribution is unlimited.
The Impact of Verbal Report Protocol Analysis on a
Model of Human-Computer Interface Cognitive Processing
by
Barbara Lynn Treharne
Captain, United States Army
B.S., United States Military Academy, 1980
Submitted in partial fulfillment of the
requirements for the degree of
MASTERS OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1991

Author: Véiuéu4, :Z(\vZZ:Z;aA>

Barbara Lynn Treharne

Approved by: KL\S\‘N“Q Stn qu

Kishor esis Advisor

TLD\fo AN

Tung Bui, Second Reader

ol .
David R. Whibple, airman,
Department of Adminisfrative Sciences

ii

ABSTRACT

This exploratory study used the "think-aloud" protocol to
demonstrate the effectiveness of Kieras and Polson's Goals,
Operators, Methods and Selection Rules and the Cognitive
Complexity Model. An experiment comparing the cognitive
processes of users on two file management interfaces, a
Command Language and Direct Manipulation interface, was
conducted. The think-aloud process was chosen as the method-
ology for conducting this experiment because of its insights
into the users' perceptions of both the task and device
representations. The experimental results provide implica-
tions for the study of cognitive processes--the nature of the
interface design influences the users' mental models of a
system, which has a direct affect on the user's performance on
a given interface,. This methodology also provides an
evaluation technique which may improve the design process of
the user interfaces. Finally, the results support the think-
aloud protocol as an effective evaluation tool of wuser

interface designs.
Ac-usioj Yor
. AT gRAML
: il tal
i bwvaco mved
P Jastiflcation.

- m—

i

r
e R .
! |
PRy Lo —————

- Pistribut lew,/ f

—

iii ; Aveilavtiity Ccaee i
Avail amdfer !
Diar | Sneet:d i

A

v ——

I.

II.

III.

Iv.

TABLE OF CONTENTS

INTRODUCTION
A. BACKGROUND
B. USER INTERFACES

C.

GOAL OF STUDY

THEORETICAL PREMISES

A.

B.

A.

F.

USER COMPLEXITY
COGNITIVE COMPLEXITY AND THE GOMS MODEL
THINK-ALOUD PROTOCOL

COGNITIVE COMPLEXITY AND USER INTERFACES

RESEARCH METHODOCLOGY

INTERFACE DESCRIPTION
1. Command Language Interface
2. Direct Manipulation Interface
EXPERIMENTAL DESIGN
SELECTED TASKS
PARTICIPANTS
EXPERIMENTAL ENVIRONMENT

ANALYSIS OF DATA

DATA ANALYSIS

-‘A.

B.

METHOD/SAMPLE SIZE

RESULTS
1. Number of Production Rules

1lv

13

16

20

ro
$—

N
[#3)

29

31

34

35

36

52

52

53

54

2.

3.

4.

Complexity of Rules

Task-To-

Device Mapping

Number of Unnecessary Steps

C. IMPLICATIONS OF RESULTS

1.

2.

3.

4.

V. SUMMARY

Affects
Affects
Affects

Affects

LIST OF REFERENCES

BIBLIOGRAPHY

APPENDIX A

APPENDIX B

on Mental Models
of User Performance
of Systems Design

on Think-Aloud Methodology

INITIAL DISTRIBUTION LIST

54

54

54

54

55

56

58

59

61

64

66

69

81

97

I. INTRODUCTION

A. BACKGROUND

Despite the growth in computer technology in today's
society, the potential for computer productivity and effec-
tiveness has not been reached. A primary reason for this is
that human-computer interfaces are not designed to be
compatible with the way in which people think--many still
experience fear and anxiety when required to interact with a
computer, resulting in their inability to learn the system and
unnecessary errors during usage [Ref. l:pp 351]. The purpose
of this thesis is to provide new insights into cognitive
processes of users when interacting with computers. Ultimate-
ly, this knowledge can be applied by designers to make systems
more usable by altering the behavior of the device, and thus
matching its behavior to the user's cognitive process of task
accomplishment [Ref. 2:pp 365]. The designer can increase
usability in several ways, such as reducing the complexity of
task structures [Ref. 2:pp 366] or applying the acquired
knowledge to the generation of training material or reference
documentation.

Currently, there exists a number of models which theo-
rize, from different aspects, the cognitive processes which a
user undergoes while performing certain types of tasks through

1

interaction with the computer system. Two of the more
prominent models are the Goals, Operators, Methods and
Selection Rules and the Cognitivity Complexity Model.

These model theories have been developed based upon
various methods of experimentation--such as, analysis of
keystrokes, user logs, error analysis, retrospective verbal
reports, questionnaires, and, rarely, using the concurrent
verbal reporting "think aloud"” methodology. All of these
sources of data are required to complete the "big picture"” of
user-interfz.e cognitive processing. Therefore, the results
of each methodology must be fully integrated with existing
theories of cognitive models. Currently, there 1is
insufficient research in the area of verbal protocol analysis.
In order to gain consistency, validity and full integration of
experimentation results, more studies/experimentation
conducted using verbalization protocols must be completed.
This thesis will assist in correcting this gap in resear a1 by
providing an experiment using verbal »>rotocol analysis in

order to model users' cognitive processes.

B. USER INTERFACES

While there are a number of user interface styles
available today, the two most common are the Command Language
interfaces and the Direct Manipulation interfaces. These

interfaces are described in general below.

2

Command Language Interfaces require the wuser to
communicate with the computer by typing a formal language,
using a specific syntax. The user in required to learn and
memorize the commands and the sequences needed to complete an
operation within a given task [Ref. 3:pp 154].

Direct Manipulation Interfaces enable the user to
communicate with the computer, and thus control activities,
through direct action on visible objects rather than by the
use of a procedural language. The user 1is provided a
continuous representation of the objects and actions of
interest, while allowing the user to execute the command
through actions such as movement and selection (performed by
pointing and clicking) of objects with the mouse of joystick
[Ref. 3:p. 154].

To date, numerous studies and experiments have been
conducted in attempts at comparing the two interfaces.
Margono and Shneiderman conducted an experiment which compared
the file manipulation operations on the Apple Macintosh, a
Direct Manipulation interface, and the IBM PC with MS-DOS,

which uses the Command Language interface [Ref 3:pp 154].

"This 1987 experiment measured the mean times and error rates

of the subjects. It concluded that the Apple Macintosh was
more user friendly--because it is easier to learn and use due
to only modest memorization requirements and because it takes
less time to perform tasks on the Macintosh due to the

3

elimination of typing with the mouse and pull-down menus.
Karat, Fowler, and Gravelle conducted a study to examine
learning and performance differences between a Command
Language and a Direct Manipulation interface [Ref. 4:pp 489].
This study measured the performances of novice users tasked to
perform routine file management operations on each of the two
interfaces. It substantiated the ease of use and learning of
the prototype Direct Manipulation language. However, it was
not able to make accurate predictions from the production
system models generated to lend support to the GOMS model.
This failure was seen as a failure to encompass error recovery
behavior into the GOMS approach, not as a complete
condemnation of the GOMS framework. In Te'eni (199%90),
experimental subjects were broken down into three groups--one
with no feedback, one with traditional dialogue feedback, and
one with visual Direct Manipulation feedback--and given two
complex tasks of providing input to the final course grade.
The groups were measured by mean performance times and logical
error rates. This study demonstrated that feedback resulting
from Direct Manipulation is more effective and time efficient
than the distance form of feedback in conditions of high

complexity [(Ref. S5:p. 1-25].

C. GOAL OF STUDY

This thesis involved conducting an experiment in which
users performed a set of complex tasks while interacting with
the two separate computer interfaces--the Direct Manipulation
and Command Language interfaces. The experiment involved
recording the users as they "think aloud" throughout the
performance of routine tasks, which required direct interac-
tion with the human-computer interface of a file management
system. The wusers verbalized their thought processes
concurrently with the performance of the task. By doing so,
the user described information required to perform the task.
It not only traced the actions of the users, but indicated why
each action was taken. This "why" information fills a void
left by other experimentation methodologies by providing a
direct insight into the user's true perceptions of the task
and device representation [Ref. 6:pp 3-4]. These verbaliza-
tions and the corresponding user logs of the user interaction
with the computer are then transcribed and analyzed with
respect to the premises of the GOMS and Cognitive Complexity

models.

I11. THEORETICAL PREMISE

A. USER COMPLEXITY

The complexity of user interfaces involves the complexity
of the entire interface system from the user's perspective
[Ref. 2:pp 365]. 1t pertains to the complexity of the device
itself, the tasks being performed, and the difficulty of
learning to operate the device. In order to significantly
reduce the complexity of any of the above components of a user
interface, a designer must have a basis for an a-zlysis and
determination of the relative complexity of the wuser's
operating environment. The purpose of this research is to
further the knowledge of interface designers by providing
evidence that continues to support the use of the GOMS and
Cognitive Complexity models as theories to measure and reduce

the complexity of user interfaces.

B. COGNITIVE COMPLEXITY AND THE GOMS MODEL

The Cognitive Complexity Theory and GOMS model
incorporate the user's representation of the task to be
performed, the user's representation of the device used to
operate and perform the task, and the relationship between the
task and the device in order to quantify the amount and
complexity of knowledge required in operating a system. Each

6

of these components is vital to the full understanding and
development of human-computer interface activities that are
easy to use, efficient, and error-free.

The GOMS Model prefaces its framework on the user's
mental information processing capabilities by describing a
Model Human Information Processor. This processor consists of
three interacting subsystems which work together to delineate
the user's mental procedures for performing a single action.
These three subsystems are: the perceptual system, the
cognitive system, and the motor system. The perceptual system
carries sensations of the physical world detected by the
body's sensory systems into internal representations of the
mind [Ref. 7:pp 25]. The cognitive system then connects
inputs from the perceptual system to the right outputs of the
motor system [Ref. 7:pp 35). Within the perceptual system,
there are two important types of memory--working and long-term
memory. Long-term memory consists of a body of knowledge,
gained through repeated associations with that knowledge, that
is stored in a network of related chunks of memory. Working
memory is the activated portion of long-term memory which
responds to the input detected by the perceptual system. An
important aspect of the cognitive system is the recognize-act
cycle which similates the fetch-execute cycle of familiar
computer operations. Once recognized, the contents of working
memory initiate actions associatively linked with them in

7

long-term memory; these actions, in turn, modify the contents
of the working memory, ultimately resulting in the requirement
of an output [Ref. 7:pp 27-39]. Thought is transferred to
actions--actions such as performed by the head-eye system and
the arm-hand-finger system--through this iterative process of
recognize-act cycles. These actions are controlled by the
motor system [Ref. 7: pp 34]. Within this specific architec-
ture, each component system is assigned parameters, such as
cycle time or storage capacity, used in the derivation of
predictive models for cognitive complexity measurements.

To further amplify this model and to elicit more direct
correlation between the user's mental model and the relative
complexity of the user's cognitive process, the family of
models known as the GOMS model was developed. This model is
based upon the "rationality principle" which states that a
person attempts to achieve goals by doing those things that
the task itself requires to be done [Ref. 7:pp 86]. The model
further assumes that behavior can be described as a sequence
of a small number of information-processing "operators'" which
can be both described and timed. Based upon the validity of
the rationality principle and the existence of such operators,
it is feasible then to predict the sequence in which the
operators will be performed [Ref. 7:pp 139]. These operations
and their sequences are performed in alternating iterations of
the recognize-act cycles of the cognitive system within the

8

Model Human Information Processor. By knowing this sequence,
and thereby knowing the number of operations and production
rules required to perform a given goal, or task, it will
conseguently determine the relative complexity of that goal.

The GOMS model consists of the following components: a
set of goals, operators, methods for achieving those goals,
and selection rules for choosing the method to be used. The
premise of the model is that goals are performed in a hierar-
chial manner in accordance with the rationality principle.
The goal structure can be considered the plan for carrying out
the completed task. The operations are mental representations
of elementary functions that the device can perform. Methods
are learned procedures that the user already has at perfor-
mance time, i.e., a skill, and that are needed to satisfy a
specific goal or subgoal--it can be as simple as a single
keystroke, or as complex as a complete set of subgoals and
operations necessary to meet its higher level goal. The
selection rules specify which methods should be used to
satisfy a given goal and can be correlated to a condition-
action (if-then) pair [Ref. 2:pp 366].

The GOMS model relates directly to the user's task
representation--it is through knowledge of the task that the
user must establish goals, methods, selection rules, and
operations necessary for the performance of any given task.
The job-task environment can be viewed through a production

9

system which is based upon the theory that mental processes,
or behavior, can be represented as a set of specific response
actions, each made in response to a particular stimulus
condition--i.e., a condition-action pair as seen as a selec-
tion rule within the GOMS model [Ref. 2:pp 369]. The
production system is composed of a collection of production
rules (selection rules) and a working memory. Within working
memory, there exists representations of the system's current
goals, information about the status of current and past
actions, and representations of inputs from the environment
[Ref. 2:pp 369]. The production systems operate in
alternating states of the recognize-act mode. During the
recognize mode, the conditions of all the productions are
tested against the contents of working memory. When a
condition is satisfied, the system goes into the act mode to
execute the operations. The contents of working memory are
modified at this stage and the system then returns to the
recognize state where more conditions may be satisfied upon
the updated working memory [Ref. 2:pp 369]. The theory states
that the complexity of the task corresponds directly with the
number of production rules that must be acted upon to perform
a given task. Therefore, by counting the number of production
rules executed, the complexity of any given task may be

quantified.

10

Inherent in defining the complexity of the entire job-
task environment is the user's model of the device which must
be considered along with the job-task representation. A
user's device model is the person's understanding of the
internal structure and functions of a device--this is often
referred to as "how-it-works" knowledge and has effects on a
user's ability of learn and operate a device [Ref. 2:pp 377].
The device representation must characterize the interaction
between the user and the device and, subsequently, an explicit
and formal representation of the device itself is needed. To
do so, this model utilizes the general transition network
(GTN), consisting of nodes, which represent states, intercon-
nected by arcs, which represent possible transitions between
states. An arc may consist of a condition-action pair and a
specified next state. Nesting, which allows one GTN to call
another in a manner similar to subroutine calls in ordinary
programming languages, c¢an appear in three places: in
conditions, in actions, and in states [Ref. 2:pp 381-383].
Each function performed by a device must be adequately
portrayed in a GTN, demonstrating the necessary operations to
be formed and the hierarchy of transitions to be executed in
sequence.

Once the device representation GTN and the GOMS model/
production system goal structure are defined, the relationship
between the characteristics of the user's task and the device

11

being used in the task may be established. The hypothesis is
that a good task-to-device mapping is one in which the goal
structure and the device structure graph correspond--thus
facilitating ease of learning and operations [Ref. 2:pp 387].
An analysis of a mapping in which there did not exist a
correspondence between the GTN and the goal structure graph
can be used to improve the overall interface--by either
altering the device itself to correspond with the user's goal
structure or possibly altering the documentation of "how-it-
works" knowledge can be provided to alter the user's goal
structure [Ref. 2:pp 390].

This model provides a formal architecture for analysis of
human-computer interfaces. The model addresses the user's
mental model, the user's representation of the task, the
device model representation, and the relationship between the
task and the device on which the task will be performed.

There are numerous studies which have been conducted
which offer support for the Cognitive Complexity and GOMS
model. Three studies demonstrating the most direct correla-
tion between the theory and the experimental results are
addressed here. In 1984, Kieras and Bovair used this theory
to analyze the results of a transfer of learning study in
which users learned to operate a control device through
written instructions. The experiment demonstrated that the
production rule representation accurately predicted the

12

relative difficulty of a set of related procedures [Ref. 8:pp
507-524). Similarly, Polson and Kieras successfully predicted
learning, transfer and execution times of text editing tasks
based upon the number of recognize-act cycles required to
perform tasks in their 1985 experiment, "A Quantitative Model
of the Learning and Performance of Text Editing Knowledge."
[Ref. 9:pp 207-212] Finally in 1990, Bovair, Kieras, and
Polson used production rule models to make quantitative
predictions for both ease of learning and ease of use. A
production rule model was developed tor a simulated text
editor. The model was then evaluated--by comparing 1its'
prediction of learning and execution times with the actual
experimental data. The production rule model successfully
predicted both learning and execution times, thus providing

strong support for the Cognitive Complexity Theory [Ref. 10:pp

1-48].

C. THINK-ALOUD PROTOCOL

In order to facilitate a complete understanding of the
implications of the user-interface decision, a complete
picture of the human-computer interaction must be acquired.
This can only be accomplished if all of the design factors--
experience o0f designers, current trends of input/output
technology, ergonomics (human-factors) research, cognitive
psychology, and evaluation of working systems--are considered

13

and integrated into the formulation of well-designed computer
interfaces. Reducing the cognitive complexity of user
interfaces is essential to achieving the final gsal [Ref.
ll:pp 1].

The think aloud protocol is a method for studying mental
processes which reflects the user's perception of task and
device representations. It provides concurrent, spoken
comments as participants work through a task. This type
protocol is a record of the natural use of software and its
aim is to get users to identify problems by explaining what
they are trying to do, and why, as well as what problems they
are having while doing it. The verbalized protocol is later
transcribed and analyzed to provide specific feedback of
critical instances of behavior [Ref. 1ll:pp 18].

Much of current research relies on evaluating interfaces
and determining cognitive complexity by evaluating the
execution times of task performance, as well as by identifying
number and type errors committed. The think aloud protocol
supplements this other research of cognitive complexity by
providing the reason why specific problem areas/errors are
occurring. Key advantages of using the think-aloud methodolo-
gy is that it quickly pinpoints problems that might otherwise
go undetected [Ref. 6:pp 3]. In support of this theory,
Wright and Monk (1991) conducted two studies using the think-
aloud protocol. Their initial study included an experiment in

14

which the success of trainee software engineers was compared
with that of more experienced designers in evaluating a menu-
based interface. They followed this study by one in which
designers of a system were compared with designers unfamiliar
to that system in predicting and evaluating problems with the
system. Monk and Wright concluded that user testing with
think-aloud methods not only is an effective technique for
interface designers, but also significant gains were to be had
from designers carrying out their own evaluations [Ref. 13:pp
255-257].

More importantly, this verbal protocol provides insight
to the user's perceptions of both the computer system that he
is working on and of the task required of him. By verbalizing
his thoughts, the user's task representation (i.e., goal
hierarchies) and the user's device representation will be made
known. Through this, the task-to-device mapping can be more
accurately achieved through the detailed observations provided
by the think-aloud protocol--thereby, pinpointing aberrations
in the task-to-device mapping, which can be later analyzed to
develop recommended alternatives that will provide better
task-to~device mapping--thus reducing the overall cognitive
complexity of the tasks to be performed on the selected

interface design.

15

D. COGNITIVE COMPLEXITY AND USER INTERFACES

Ultimately, the chosen interface design will impact the
user's ability to perform required tasks on the interface.
The extent to which the interface allows the user to interact
unhampered is a reflection of the demands of cognitive
processing imposed on the user. The GOMS and Cognitive
Complexity models theorize a method for identifying and
reducing these demands. Each of the two interfaces chosen for
this research, Direct Manipulation and Command Language,
appear to have complimentary demands on cognitive complexity
issues with regard to interface design. It is the premise of
this research that the Direct Manipulation interface is easier
to learn and operate because it has less taxing demands on the
user's cognitive processing behaviors. A comparison of the
types of cognitive processes required by each of the two
interfaces follows.

Because the Command Language interface requires the user
to - Mmunicate with the computer by typing a formal language,
using a specific syntax, the user not only has to learn the
requirements of the task domain to be performed, he must also
have an understanding of the computer itself. The user 1is
required to learn and memorize the commands and the sequences
needed to complete an operation within a given task before he
can begin typing them into the computer. The user may make
errors due to: the confusion of using the syntax itself,

16

typing errors, and a mismatch between the user's intention in
the task domain with the computer concepts or syntax [Ref.
3:pp 154-155].

Specifically, this approach to interface design has
several disadvantages: the commands are difficult to memorize
and are therefore error prone; uncertainty exists that a
command has been executed as expected (requires the user to
follow-up by performing a subsequent command); and the
inability to scroll through directories in both the forward
and backward direction necessitates a high degree of
memorization and/or the repeating of the operation [Ref. 3:p
155]. The heavy load of memorization required by the Command
Language 1interface burdens the Model Human Information
Processor with a large number of retrievals of information
from long term memory and repetitious recognize-act cycles.
As theorized by Kieras and Polson, this correlates directly
with a bad task-to-device mapping, and, consequently, higher
user complexity.

Direct Manipulation interfaces enable the user to
communicate with the computer, and thus control activities,
through direct action on visible objects rather than by the
use of a procedural language. The graphic interface and mouse
selection provides the user with Direct Manipulation interac-
tion and allows the users to operate intuitively--without a
lot of memorization. In Direct Manipulation, the visual

17

representation should match the way in which people think
about the problem [Ref. 3:pp 154)]. This further allows the
user to focus on the task itself with little need to "learn"”
the computer operating system which is given [Ref. 3:pp 155].

Another central issue in determining the demands placed
on the cognitive processors of the user is the feeling that
the user has control of the actions he is performing on the
computer--this is termed "directness." It is theorized that
if the relationship between the command and the action can be
made more immediate and direct, the user's understanding will
increase [Ref. 3:pp 154]. This relates directly with the
recognize-act principles of the GOMS and Cognitive Complexity
model in that if the user can more immediately recognize the
state that the computer and/or task is in at a given time, the
user will be able to select the proper methodology and
production rules for the next step within the goal hierarchy.
I1f this is done with more accuracy, there will be less
required recognize-act cycles and less production rules fired.
The Command Language interfaces create a feeling of indirect-
ness between the user and the world of action. This occurs
because the user is constantly describing, through typed
commands, the actions rather than actually performing the
actions. On the other hand, in Direct Manipulation interfac-
es, the user performs actions on the objects of interest and
the system shows the actions that are performed immediately

18

[Ref. 3:pp 154]). Therefore, the user has a feeling of control
over the objects in the task domain--i.e., the user senses the
"directness" of his interaction with the computer. This sense
of directness should ultimately result in increased efficiency

for the Direct Manipulation interface user.

19

III. RESEARCH METHODOLOGY

A. INTERFACE DESCRIPTION

The two interfaces, Command Language and Direct
Manipulation, have been developed for the purposes of experi-
mentation and are only functional with respect to the
operating system's file management system. The system
described herein simulates the common functionalities of any
typical file management system.

The file management system supports the user in managing
the files that work together to produce the program that the
user sees and interacts with on the screen. A directory
contains the files which make up the program. Subdirectories
are utilized to further segregate files in logical groupings
for easier identification. A typical file management system
allows the user to perform the following functions: to
create, copy or rove files and to create or delete directo-
ries. Each of the two experimental interfaces provide these
specific capabilities: access to a directory tree and help
screen, create a file, copy a file, rename a file, sort files,
delete a file, create a directory, and delete a directory. 1In
addition, the Command Language interface has a command to view
the contents (files and subdirectories) of a designated
directory. This function is provided automatically by the

20

Direct Manipulation interface when a directory or subdirectory
is selected with the mouse.

At Table 1, is a complete listing of all the commands
available within either interface, to include the sequence of
steps required to perform each.

Instruction sets given in Appendices A and B were
provided to the user in the conduct of the exercise and also
provide a detailed description of each of the interfaces as
described below.

1. Command Language Interface

The Command Language Interface includes the three
windows illustrated at Figure 1: (1) a Directory Window which
displays the directory tree, (2) a File Window which displays
the subdirectories and files stored in a specified directory

as identified in the label, and (3) a Command Window which

displays user-input commands, as typed on the keyboard.

DIRSCTOAY YWANDOW

m’.ﬁ_

Figure 1. Command Language
Window Format

21

TABLE | - PROCEDURES RREQUIRRD T0 BXECUTE COMMANDS

Command Comrmand Language Sirect Mamipulatis:
Name Procedures Prozedures
1. Copy Pile COPYPILE Select directory

(directory\from filename>
to <directory\to filename’

Select {ilename
Se.ect new cage
: i v

Select Copy Pile :ice:
Accept path pame
2. Create 717» CREATERILE {directory\new - Select direstory
filename? - Select new name.
- Select Create Pile icon
- Accept path name
J. Remove Pile REMOYEPILE) - Select directory
(directory\old file ' - Select f£ile pame
name> to {directory\new file - Select Delete Pile :izon
name? - Accept path name
4. Rename File RENAMEPILE (directory\old - Select directory
filepame) to (directory\new - Select file
filename) - Select new name
- Select Rename File 1con
- Accept path name
5. Sort Pile SORTFILE (directory> by (sort - Select directorz
mechanism) - Pull dows menu from
Files Sort window
- Select sort mechanism
6. Create Directory CREATEDIR (directory\new - Select higher order
filename> directory
- Select new name
- Select Create Directory
icon
- Accept path name
7. Directory Tree DIRTRRE <directory> - Select Directory Tree
icon
8. Remove D tory - Remove direc ory - Remove directory

contents .
- REMOVEDIR {(directory>

contants

Select directory

Select Delete Directory
1cop

Accgg; path
verification

9, List Files

LISTPILES <(directory>

Select directory

10. Help

BELP (command name>

Select Help 1con
Select command name

22

If a portion of any window or screen is obstructed
from the viewing screen, the user is prompted to type "M" for
more.

The keyboard is the only input device used for the
Command Language Interface. All commands are typed on the
keyboard at the command line. Only one syntactical format is
correct for each command. If the user types a command
incorrectly, omits an argument, or specifies a non-existing
file, an error message appears in reverse video at the base of

the command window as shown in Figure 2.

ANBMALS
=
SPECIAL

I R

COMMAND WINDOW
COMMAND=> arvee

Encr in command. Type HELF frr halp
STRIKE ANY KEY TO CONTINUE

Figure 2. Command Language Screen
Containing Error Message

The error message indicates the type of error made,
but not the corrective action to be taken.

23

A user can access a general Help screen at any time
by typing the command HELP at the command line of the Command
Window. The user can obtain a detailed description of each
command by typing the command HELP, followed immediately by
the command name. Figure 3 shows an example of the Help

screen for the CREATEFILE command.

HELP: GENERAL |

1. The Command Laruage (nterface provides & method of meraging fes and drectories.
2. Al commands are 10 be lyped In lewer case o the cenmand Ine, Lo, botiom of the
oareen,

L All commarsie rveniing drecterios are 200umed 10 be at the | or “reet® divectory,
mh\manh”zmMQndr::w}.

4 Wornalion is nthe ol e and §is iInlormation in
‘..Md” provided 109 poion sceeen

.8, Commands inckude the folowing
capyln

Frass id for move, ot any other oy » adt.

COMMAND WINDOW

Figure 3. Command Language General
Help Scre 2

An example of the Command Language screen 1is
provided at Figure 4 as the user might see it during the
performance of a complex task. 1In this instant, the user has
displayed the directory tree and listed the files in the

'business' directory.

24

!m- n @tve B hae A isbel

|
! |
Q> 18081 1120 |
M;‘ :M 1130 I
L ¢4 |
Proes M e

I
A
|nam 110 12080
oF WY ehet B (-]
COMMAND=> ;

! !
| i

Type a cuvumarsd and prass ENTER, of pe EXTT &0 oo swesian

Figure 4. Command Language Screen
Complete Task Performance

2. Direct Manipulation Interface

The basic structure of the Direct Manipulation
Interface includes five windows as shown in Figure 5: (1) a
Directory Window which displays the hierarchial directory
structure, (2) a File Window which displays the files listed
in a selected directory, (3) a File Sort Window which displays
the files of the selected directory sorted by name, date of
creation, or size, as designated by the user, (4) a New Name
Window which displays all the names available for the create
a file/directory and rename a file commands, and (5) an Icon
Window which contains ail the icons used for task operations.
If any of the information window views are obstructed, the

25

user must perform a scrolling operation by clicking and

dragging with the mouse as described in the instruction set.

| | o
I ‘ FAE SORT i NAME |
l | waoow | weoow |
| DmECTONY i { |
i WIDOW - | _
] ! ;
l i i
! N I
F | ICON '
[wnoOow

ns 5

oW ‘

i

|

{

e e

Figure 5. Direct Manipulation
Window Format

The primary method for input to this interface was
the mouse. The only task which required the use of the
keyboard was task five, in which the user was required to type
in a corrected path name when copying a file £from one
directory to another. All other input was performed by
clicking with either the right or left mouse button as
prescribed in detail in the instruction set.

When the user performs an operation properly on a
file or directory, a prompter window appears allowing the user
to accept or cancel the operation. If insufficient

26

information is provided for an operation, or an error is made

in the selected information, an error message will appear

containing a simple error statement as shown in Figure 6.

12: 98184 (box
bearnict 12-60:84 [Drfcase
Mitls - 12.08:04 | 1let

| jcabimat 1133 98-01-3t 12:8B:84 [CAF
j worth cercif S5 98-81-31 12 bO:m (desklang
: south e ir 2215 98-81-31 12 BR:4 [disk
| vest [X U
Nit"w FILE 10OKE: BIRECTORY ICONS: OTRER 1COME
¢lares
=l — 1
e e |
Ty i T. |
osrmict Selact e File wene # H
»ille Tty
cabiwet
cortit ‘——”:1 fﬁ—
c"“r 1 _"IT -
check L_b l Pelete
cof f aem
aoine ¥
contrctl | ”L .
let

::rc\l ' Virestory

Figure 6. Direct Manipulation
Screen Containing Error Message

As in the Command Language Interface, the user may

access a general help screen when needed. An example screen

is shown at Figure 7.

The user selects the name of the command or item
that he needs help with by placing the cursor over that name
and pressing the left mouse button. The right side of the

Help window then displays the step-by-step instructions for

the specific operation.

27

An example of

selected the 'business'

a

screen in which the user

has

directory is provided at Figure 8.

This portrays the same information as provided in Figure 4

using the Command Language Interface.

—
L
N

supplins v
Flage r‘_ . Snlest l~ directary to oowtain
oest . the weu dirscrory e & mub-
=rth reety dirscrory.
soath leve Miructary
-t tere File . Sulsct the nawe of the mew
silitary (Directery Uiview directory Fran the sy nane ke cons
plarnem re windou,
jore lle Liet Uinda ‘]
ile Sert Windes 3. Zelact Creats Birectary icam.
iy Screew _'
boarnit {oem Uindow 4. fccept the path for mmy
Mils conmands dirsctory by cither pressing
cabinwt mar Vindoe enter on the heyhourd, w
certif Ramane file clicking the 7ight sowee
chair Filee dwttor and then the dcrapT
cheek cwe fron che nem vith the ieft
cof foum Indow locat:ome wouss buttoa.
colem
contrctl ’.}‘J.
comre2 M-n.l:n

o \hut inses
' thov taerrd y imo

Jireciery

Figure 7. Direct Manipulation
Help Screen -
Create Directory Help

nilitary
Jiarss
Jets

[Ty

beg
boarnia
bitle
cadinet
coreif
cher
chack
cof fomm
coluwe
costretl
coatretd

.

YILE 1COmE ! M ESCTORY [CONE: OINIR 1CONS

hl"o! S1y0t tory
e |
hino

Birocremy

Figure 8. Direct Manipulation
Screen - Complete Task
Per formance

28

B. EXPERIMENTAL DESIGN

The experiment design was developed to support the
evaluation of the cognitive complexity mental processes of the
typical user while performing commonly used, complex tasks
involving the file management system on two separate
interfaces. Five complex file management tasks were developed
to test the mental algorithms required to operate within this
system. A separate group of four participants was formed to
perform the file management tasks on each interface. Because
an important research area was the user's task representation,
it was not necessary to test the same group on both
interfaces. The task knowledge gained by the subject during
the initial task performance on an interface nullified the
ability to reevaluate him on a second interface with the same
or similar tasks. Therefore, two groups of participants were
used.

As each participant began the experiment, he/she was
given a brief overview of the experiment and was the provided
a set of instructions to read regarding the specific interface
that he would be using. Each of the instruction sets
contained parallel information--a brief overview of operating
and file management systems in general, a detailed description
of the interface itself, and an introduction to the think-
aloud procedure that would be utilized in the experiment.
Copies of each of the instruction sets are at Appendices A and

29

B. It was emphasized throughout this introductory phase that
it was the interface, and not the individual, that was being
evaluated. Once the participant completed reading the
instructions, he was given the five tasks to perform, told
that time was not a factor of this evaluation, and asked to
work through the tasks toc completion.

The users were not given any practice session to become
familiar with the interface prior to the start of the
evaluation. During preliminary test runs of the experiment
tasks, it was observed that much learning was acquired during
the practice session and that many of the user's vital
concerns, misperceptions, and errors were lost for analysis
during this practice session. Therefore, the practice
session, as well as a set of simple tasks, were removed from
the experimental process. This was not done without known
consequences--the user's work through of the early tasks was
particularly cumbersome as it was necessary for him to undergo
a very steep learning curve in order to successfully complete
the task. This lack of familiarity forced the users to use
the help screens extensively. There were also high rates of
error in learning syntax procedures for the Command Language
interface and mouse techniques for the Direct Manipulation
interface. It also became necessary for the observer to
intervene, on occasion, to assist the user in order for him to
proceed with the task at hand.

30

The observer's role was vital to the think-aloud protocol
procedure. Each experiment was conducted individually in
order for the observer to be present to ensure that the
"talking aloud"” continued throughout the experiment. Although
the observer was stationed along side of the participant, the
observer attempted to be as non-obtrusive as possible. The
role of the observer was to observe, and not to interview, the
participant. The observer prompted the user to continue to
verbalize his actions, thoughts, and concerns throughout the
experiment. The observer only provided help if the
participant was unable to continue working through the task
because of a repeated error or if, after trying all means of
obtaining assistance from the interface, he could not take

another step towards accomplishing the task.

C. SELECTED TASKS

Five rudimentary tasks, which required complex cognitive
thinking--such as establishing a goal hierarchy, operators,
methodology, and selection rules--were designed for the
experiment. The selection insured that the users were
required to perform each of the commands available within the
interfaces and that the users demonstrate an understanding of
the relationships of the directories, subdirectories, and
files within the management system. The five tasks are
provided below, along with an explanation of the minimal

31

cognitive requirements of each. The capitalized tasks are
stated just as they were written for the p: ticipants to

perform.

TASK 1: FIND THE FILE CALLED PLANE AND COPY IT TO A FILE
CALLED AIRCRAFT WITHIN THE SAME DIRECTORY

The file called plane is located within the subdirectory
airtrans. Therefore, the first goal of the user is to
locate the file--because it was similarly named with the
subdirectory planes, the user was forced to distinguish
the name differential, as well as the file-subdirectory
differentiation. Once located, the user must then select
the copy operations to copy the file back into the

correct subdirectory.

TASK 2: CREATE A FILE CALLED CAR IN THE GROUND DIRECTORY
AND SORT GROUND FILES BY FILE SIZE

The user's first goal is to locate the subdirectory
ground. Once this is completed, the goal is to create a
file named car and put it in this directory. This
involves selecting the proper operators to create the

file and selecting the correct path name for its

32

location. The user must then select and execute the

operators required to sort the files by size.

TASK 3: DELETE THE PLANES DIRECTORY

In order to delete the planes directory, the user must
first locate the subdirectory and then determine what the
subdirectory contains. The user must then remove all the
contents of the directory prior to attempting to delete
the file. The user must, therefore, identify the planes
subdirectory called jets and subsequently remove the
contents of it, as well as the jets subdirectory itself.
Once removing all of the contents of planes, the user

many then remove the directory planes.

TASK 4: FIND THE LARGEST FILE OF ALL THE DIRECTORIES AND
RENAME THE FILE TO LARGE.FIL

The initial goal of this task is to locate the largest
file. This requires the users to sort =ach of the
directories and subdirectories by size in order to locate
the largest of all files. Included in this 1is the
requirement to compare the file sizes of those files
located at the directory level. Once all of the file
sizes have been compared and the largest file located,

the user's goal is to rename the file large.fil. The

33

user must then select the correct opera ors and execute

the command to rename a file.

TASK 5: THE SYSTEM SUPERVISOR INFORMS US THAT THE GROUND
DIRECTORY IS A MISNOMER AND SHOULD REALLY BE CALLED THE
FLEET DIRECTORY. ALSO, HAVING A GROUND DIRECTORY CAUSES
CONFUSION AMONG THE STAFF. RECTIFY THE SITUATION.

The user's first goal is to create a directory called
fleet and place it in the same directory as ground. The
user must, therefore, locate the ground directory and
note its higher level directory. The user must then
select and complete the commands required to create a new
directory. Once the new directory is created within the
higher level directory of ground, the user must then move
the files from ground to fleet and remove the ground
directory. To move the files, the user must copy the
files individually from ground to fleet and the remove

each file from ground. After all files have been moved,

the ground directory must then be removed.

PARTICIPANTS

The type participants chosen for the experiment were

intended to emulate the intended user of most interfaces--that

of an inexperienced novice. Eight students participated in

experiment. Unlike more typical data oriented

34

experimental protocols where larger numbers of participants
are needed to make certain of the accuracy of the outcomes,
verbal protocol analysis requires only a few participants.
The reasons are twofold: 1) the wealth of information
obtained from such a protocol requires a tremendous effort of
compilation and analysis, such that large numbers of partici-
pants are not feasible and 2) each participant's verbalized
representation of the task performances are extremely
insightful and useful at pinpointing problems. The eight

volunteers, four men and four women, for the experiment are

all graduate students, recently wenrolled at the Naval
Postgraduate School. All had 1little or no exposure to
computers and operating file management systems. The age

range of the students was 24 to 40, with a mean age of 32.7.
As each student was a graduate 1level student, their
verbalization skills were judged to be above average. The
eight were randomly assigned to each interface; although it
was ensured that an equal number of men and women were

assigned to each interface.

E. EXPERIMENTAL ENVIRONMENT

Each of the experiments was conducted on an individual
basis and performed in a quiet, laboratory setting that was
not unlike most office environments. The subjects were each
provided with a A UNISYS 8386 computer, monitor, and keyboard.

35

Participants utilizing the Direct Manipulation interface were
also provided with a mouse. The users were allowed usage of
a pencil and paper to take notes during the experiment. if
they so desired. The experiment was recorded on an ordinary
tape recorder which contained a built-in microphone. The tape
recorder was placed conspicuously near the monitor, so as not
to intimidate the participant. Because the microphone was
very sensitive to noise pick-up, the user cou.d speak
comfortably with a normal to low voice range. The observer
sat to the side of the participant throughout the experiment,

interfering as little as possible.

F. ANALYSIS OF DATA

Prior to the start of actual conduct of the experiment,
baseline goal hierarchies and production rule sets, in the
form of chronological flow charts, were generated for each
task within each interface. These are provided in the below

figures.

36

Command Language Interface Goal Hierarchies:

Find the file called plane and copy it to a file
caited aircraft within the same directory.

Copy
Figne 10
Aircralt
Find Copy
Piane File

Fite

LISTFILES

DIRTREE

Create a file called car in the ground directory
and sort ground tiles by file size.

Creata car end
sort ground by

SizZ8
Create Sort
car Groung
Filg Ly size
Find
Ground
Directory

DIRTREE LISTFILES

37

Delete the plancs dircctory.

Qelote the
Plgnes
Diroctory

Fing Oolote
Planes PIganes
Directory Directory
Delote Detete
DIRTREE Subdirectories Directory
Fites

LISTFILES

Osloto
Files

Find the largest file of all the directories and
rename the file to /arge.fil

Fing tho
lorgest tilg
end rengmsg it
fgrga i

Reheme

large filg
1o Large Ful

Detlermine
Lergest
Filg

38

'he Sysiem supervisor informs us that the ground
directory is a misnomer and should really be called
fleet directory. Also, having a ground directory in
the system causes confusion among the staff.

Rectify the situation.

——

- Daletg tha
Groung
Dirgctory

!

Hongmo tho
Groung
Oiroctory to
F/erel
T
Create the Copy
Fiset Groung Files
Oiroctory 10 Flget
/ -
l Find Creats the
I Ground Fleat
t Diroctory Directory
DIRTREE
LISTFILES

Direct Manipulation Interface Goal Hierarchies

Find the file called plane and copy it to a file
called aircraft within the same directory.

Copy Plane
10 Aircraft

Find
Pigne
File

> >

Copy
Filg

Select Read the S
Directory File Names

elect
Filg

elect Select
New Name Copy icon

39

Create a file called car in the ground directory
and sort ground files by file size.

|

Croote car
and sort
ground by
size
Create Sort
Car Ground
File by Size
Fing Crooto Oisplay N/ Solact
Ground Car Sort ‘By Size’
Directory File tienu

.

Seiect Select Selecl.
Olrgctory New Namg [Creste Filg
tcon

Delete the planes directory.

Delete the
Pignegs
Directory
Find Dalets
Pianes Pignes
Dirgctory Diroctory
Delete Delote
Sub- Directory
aisectories

Delste Select
Deolate
Files Director ~

T solag
Seloct Solnct Setont Dalnio
Directory Flig Doatate Filo A pirnclory

Seloct
Doiote File
icon

40

Find the largest file of all the directories and
rename the tile to large. /il

Fing tha
lorgost hilo
and renams 1

large it

Rengmg
large tila
to Large F,/'

Detaerming
Largest
Fila

AN Snlrv‘!

Ft]hnd Sort Filg vF‘J"l”-’"”\ lrl\ec' (I""\nﬂw ico
9 Cy L ,9..; Salect Blecl
Filg Siza 8 Ditactor I‘lew MNam

(Ilg/

e T E N
Raed Fi

Lo e N

(Levge Fllg -0\
Lurrant FHr_\/

Selact
Directory

Ulsplay
Sort Meny

The system supervisor informs us that the wcunu
directory i1s a misnomer and should really be called
fleer directory. Also, having a greund directory in
tne systerm causes contfusion among the statf
Rectify the situation.

Rename the
Ground
Directory 10

Flgat

Ceante the Copy Devme the
! Fieet Grourz Flies Ground

Cireclory 1o Flgg! Direclory
—T
_— :
fing Cionta tho e T \{(
Ground 100t (Grovan) / (riam Hama """
D“OC(O'Y Ultnrlovy NUBLIQI 5 3 .. , \ Hamna -
e Terec!) \. uvo‘ 'o)

- AL N1+, 3
Setect O 3-mcv\ Setect =
Pimw Crante ""' (Gneci
Leva) Abova k Caare)
5 Crrgctory "'”" Qiiactory /

. Grouna Hema
Serect S'lerl'\

fira De'sre)

“eue teops

41

Command Language Interface Flowcharts

Cind the file calied plane and copy it to a lile
called aircraft witnin the same directory.

JLSTFILES Prane Yes - /Copytie /
e/ Located !

Foot Directory

LISTFILES

Each Subdireciory

Create a tile called car in the ground director y
and sort ground tiles by lile size.

groungd

Yes oo
/ Crestalile / ort Groung
air Car Oy $126
located”?

Root Directory

LISTFILES

Each Subdirectory

42

™~
e

—

e

& the pianes directory.

,-\»
S

- ————

A
/ ~,
T s N
Tare gl e 2 s
) “ . /
%,‘K__/ _ tacce! ng Jﬁ/
PECCl Tir N 7 - N
i
No
‘ No
| l No]'<
1’ | T
No , do
———UisTRies/ /Remove gl 7 yilgs
- / [A— N\ exigt
Each N
]Yéa
,_—,
. —
HRemovetile

Sutdirectory

—
~hEavre
LT
/A\
“n qups Ye8 —
LEC/

L._';f r‘u-rmne,'—)L|57F|
N euvivy /
N bl /
Sude

. ec No
EIIPT

¢ —
N 8xis1

N 7.
Yes
/

/
¢, Removetilg

ile of all the directories and

Find the largest
rename the file to large. fil
/La'ge sze/
20/
- L“" ’ BREaR NKVITIN Yes ST T T LA Uean Ay Yes .
s PKLLU»~_\\ﬂH()(‘[tvv ’_">LIS1F|LE / u,@,‘v),, 7F||$5/
SOYARRNAN L) A CIIL]Y —
-~ \ - AN
=oot Dir 53 \L
i v No PN
amm ottt S0
[‘Rergme Fllg ! o3 PR L LN No
7 e /\-——
/| Large File Name R
= - g\ N
/ Large Fiie NO Aurrani- Yes
/ ey Sort ties /
/ . \'7:,%9’ . by se /
) :'Yes
PR 1o Srany
i *nm“\ 310 /
1 AR /
/{ La'gn tite /
v eurrgnt

43

/
}
/rama
/ ''a ~amg
| S

ine system supervisor informs us that the Qrounics
directory is a misnormer and cnould really be rallod
fleel directory. having a wround director

O)" 1
(he system causes confusion among the staff
Ractify the

> Siuathion
/LISTFILES

Root Dir

Also,

Yes
Crealeon / do\\
Toor USTF‘LES t1nq

ground

i Copytiie 1o ;
fleo! <

Direct Manipulation Interface Flowcharts

Rgmovelllg

Find the file called piane and copy it to a lile
called aircraft within the same directory

/ NO/L
i
Select a Read Dlﬂg__) Selact
Directory 7 Flig List

foung piane
?

’

Setact Cepy/ Selact /
Filg 12on “*—'/Ngw Nemo

44

Create a file called car in the ground directory
and sort ground files by file size.

Selact Cresle
Fite tcon

Diaplay FHo
Sort Monu

—_—w
Salont
‘By Stin®

Read Setact Selact New
/ Dueclory / Ground Dir tigme Car

Delete the planes directorv.

>elent Delet
Diraclory

Select

Locale
>Subdlvecmvy

Pignes
Dirgctory

Fsa80
Directory
List

Yes

a
do
fligs
exlgt
?

N
Seloct < .
Pianes sotoct
Dir Flig
Selact
elect Deletg Deleta

Olrectory Filg icon

fcon

Yes

Seatact
Delete
Fllg Icon

45

Find the largest file of all the direclorics and
rename the tile to large.fil.

L_____ B

/s

For v Cu '/'k Yes rLe"ﬂ Sitn -]

4 Fach Lavge Flle Flig » Sutrent Sire
C reytory \ | arge ANID

’No

\ File /_gmq fiilg -
Cutrent Filg

) T\ o
Seiect Large / Select Selact
wy File Name large 1 /Renamg Flle
e icon

/ & Directory New Nam
et

The syslem supervisor informs us that the arounid
directory is a misnomer and should really be called
fleet directory. AIlsO, having a ground directory in
the system causes contusion among the staff.
Rectify the situation.

Reed Select Selec Select / Selact
Dtr 7’0’7500/ FIOQI Crantn Ground
List Oir New Namg Directory Dlleclovy
tcon
Crsongo7 Seoloct R
ath Name Copy FlI ﬁ

to Fleet icon

Select 3 roer 7
Delote [‘glglca'
Flle icon Ditactory
icon

46

The analysis of the data began at the conclusion of each
experiment session. The tape recording and a user log of the
session was used to transcribe the data in a verbatim manner.
Several more iterations of the tape transcribing resulted in
a summarized version in which pertinent information was
retained in verbatim form for further analysis. Based upon
these transcriptions, goal hierarchies and flow charts for
each individual participant's performance on a given task were
developed. The user's goal hierarchies were then mapped to
the baseline goal hierarchies to obtain the needed task-to-
device mappings. The flow charts were similarly compared to
their respective baseline flow charts and differences were
computed. The following specific data elements were measured:
the number of production rules, the complexity of the rules,
the matching of steps in sequence within the task-to-device
mappings, and, finally, the number of superfluous steps
performed by each user.

To illustrate this process, the complete analysis of the
task requiring the user to delete the planes directory will be
shown as performed by one user on each of the two interfaces.
This includes the summarized transcription of the experiment
session, the task-to-device mapping and the £flow chart

generated for each user.

47

COMMAND LANGUAGE INTERFACE
SUMMARIZED TRANSCRIPTION
DELETE THE PLANES DIRECTORY

-HELP DELETEFILE; HELP; "They trick you on that one by
not having it follow the same name'";

-HELP REMOVEDIR; HELP REMOVEFILE; attempts to remove the
plane directory--"Aah, it's not empty, do you want me to
do i1t anyway? Well then, I guess it must have files in
it that I have to remove first";

-HELP LISTFILE; HELP REMOVEDIR; lists the files 1in
planes; removes the files in planes--attempts to delete
the directory jets as if it were a file, receives error;

-"We did not previously remove jets . . .jets is a
directory; well, you have to delete the files in a
directory; do you have to remove directories too?";

-HELP; HELP REMOVEDIR; attempts to remove the directory--
receives the error that jets is not empty;

-Removes all the files from jets; REMOVEDIR
military\planes\jets; REMOVEDIR military\planes;

Delete the
plangs
directory
Find Delete
planes plenes
directory dlrectory
// —~—
DIRTREE LISTFILES Dolete Dolete
Subdlirectorles Olrectory
Flles
Help Help Hel
D
Deletefile ABemovelile /\gemovedir ALISTFILES
Figure 9. User's Task 3 Goal Hierarchy - Command Language

48

Help Help Help / Remove Help
Delete Help Remove - Remove Dir Ligl
Flle Dir Fllg pianes Fligs

8r1of - NO1 8mMply l/
Haip / Remove / No ¢, / / tolp /
Remove Help Flie 83\, AISTFILES Romo.e
Dir jets / DIr
error - source ? planes
file coes

not exigt

Figure 10. User's Task 3 Flow Chart - Command Language

DIRECT MANIPULATION INTERFACE
SUMMARIZED TRANSCRIPTION
DELETE THE PLANES DIRECTORY

-"I'm going to go over and highlight planes subdirectory
and DELETE FILE icon; an error came up that I didn't
select a file, so I guess I'm going to go over and try to
select both files and see if that works";

-"Oops, it won't let me, so I'll try one at a time";
delete both files; "there are no files in my directory so
I'll go ahead and try to delete the directory planes";
selects the DELETE FILE icon and receives same error;

-"I'm going back up and try to get a menu from planes,
can't get one; oh, I see the error . . .there is a DELETE
DIRECTORY icon which I should be using"; selects the
DELETE DIRECTORY 1icon--receives an error that the
directory is not empty;

49

-"1 have no idea what that means so I guess I better look
at the HELP; I'm going down to DELETE DIRECTORY, maybe
that's it because planes is a subdirectory"; reads HELP
window and discovers that all subdirectories must be
removed in order to remove the directory:

-Deletes the files under jets; "I don't know whether jets
is a file or a subdirectory so I'll try to delete the
file--nope, o.k., delete directory";

-"Now finally, I can go ahead and delete the planes
directory"; deletes the planes directory;

Dnatelo the
plangs
Olrectlory

[

pgggs Delate {lle Delate pianes Delete tllg Delote Delate DIr
Diractory plenes flies plangs Subdlrectory planes

e

Select
Ditectory

Salect
Deoleate
Dir 1con

- Qrror - - error -
G
Selact Seiect Selact
Otr File Delete flig QDSNe'e]Delem

ub- F
lrectory/ fles

Figure 11. User's Task 3 Goal Hierarchy - Direct Manipulation

50

Selacts Delete 3/ Salacts Doleteo

g/%'gg;s elects Delele
alfectory tlie Iicon / fFllo tcon ;[)Imcrory Iecon
Efror - no tile \ Ertor - no tlle Error - L’Fiia not
selected Yes selected _2mp!
felp Doloete
Dtroctory
,_J.
Selects Delete
Flig tcon

Selacte jols
Ditectory

"
No e N

81?5&8?;9‘9 “~/Selects pianes, Selscts Delate elects Dele! Flley A
fcon Directory Directory tcon Flie Icon Found)

golac! Dnlomz
i Filog tcon

Figure 12. User's Task 3 Flow chart - Direct Manipulation

51

IV. DATA ANALYSIS

A. METHOD/SAMPLE SIZE

The data extracted from the goal hierarchies and flow
charts were utilized for comparisons between two groups--the
Command Language and Direct Manipulation Interfaces. The data
was computed by comparing 20 (4 subjects, 5 tasks) data
points: each of the four users within a group performed five
tasks. Four dependent variakles were computed--the number of
production rules generated, _he complexity of the production
rules, task-to-device mapping, and the number of unnecessary
steps added to the production system. While the number of
production rules generated by the user and the number of
extraneous steps were counted, the relative complexity of the
production rules and the strength of the task-to-device
mapping is a relative rating score. Each was compared to the
baseline data and was rated between zero and one, with the
rating of zero implying strict adherence to the baseline
model. The mean and standard deviation of each measure was
calculated and a series of one-tailed t-tests were performed

on each measure.

52

B. RESULTS

A table which summarizes the analyzed data is provided at

Table 2.
TABLE 2: SUMMARY OF DATA ANALYSIS
VARIABLE MINIMUM MAXIMUM MEAN STANDARD
VALUE VALUATION DEVIATION
Number of Production Rules
CLI 3.0 6.0 3.9 .91
DMI 1.0 5.0 2.55 1.05
Confidenie Interval (t‘£28) = 4.3.4ll;-f < .0001)
Complexity of Production Rules
CLI 0 .98 .48 .26
DMI 0 .8 .31 .21
Confidence Interval (t (38) = 2.0781, P < .005)
se——
Degree of Mapping Correlation
CLI .43 1.0 .63 .18
DMI 0 .7 .4 .17
Confidence Interval (t £28) = 4.?E22, P < ,0001)
Unnecessary Actions
CLI 2.0 6.0 4.15 1.31
DMI 0 5.0 2.3 1.34
Confidence Interval (t (38) = 4.4141, P < .0001)

Analysis of the four specifically measured areas produced

the following results:

53

1. Number of Production Rules
Users of the Command Language Interface
generated more production rules than Direct Manipulation
users, with means of 3.9 and 2.55, respectively.
2. Complexity of Rules
On a scale of zero to one, Command Language
users created more complex production rules than Direct
Manipulation users.
3. Task-to-device Mapping
There was a much stronger task-to-device
mapping for Direct Manipulation interface users.
4. Number of Unnecessary Steps
Command Language users performed an average of
nearly two more unnecessary steps in the task performances

than did the Direct Manipulation users.

C. IMPLICATIONS OF RESULTS

The results of this experiment have significant
implications for four major areas of user interface
development--how the nature of the interface affects the
user's mental model, the performance of users operating on an
interface, the systems design process, and implications for
the "think aloud" methodology. Each of these will be

addressed.

54

1. Affects on Mental Models

User interfaces do affect the mental models of
users. The design and development of the interface can 1)
shift the focus of the user's attention to various aspects of
the operating requirements, 2) determine the degree of working
memory load, and 3) determine the user's ability to recover
from errors. The results of these three affects on mental
models are a more simplified mental model for the user.

Specifically, by choosing a Direct Manipulation
language, the designer will allow the user to focus on the
task at hand--as he will be able to visualize the object of
interest as well as the actions (via the icons) that are
required to be performed on those objects. The user does not
have to learn or memorize the syntax required of each command
--the command icons are before him at all times and may be
accessed by the mere pressing of a button on a mouse. The
user may therefore concentrate his efforts on the elements
required of each task--the interface has become invisible to
him.

On the other hand, the Command Language user must
know the commands prior to typing them in for execution.
Knowing the commands initially requires the user to memorize
commands and, ultimately, requires the user to learn the
commands through repetitive recognize-act cycles prior to the
command becoming a part of long term memory. While users of

55

the Direct Manipulation interface must ensure that all of the
required information is selected prior to being successfully
executed, he may act intuitively by comparing the objects of
the task and the windows available to him--he must not
memorize any commands. This requires the user to focus on the
interface itself, as well as the task to be performed. This,
of course, increases the locad on the working memory of the
Command Language user. A second aspect of the interface can
provide alternatives f. - reducing the burden of requirements
on working memory. The constant visualization of data such as
the directory window in the Direct Manipulation interface
reduces the load on working memory significantly, which also
effects the user's ability to detect the cause of and to
recover from errors. The visual representations of the Direct
Manipulation and the reduction of errors extraneous to the
task at hand allow the user to more directly determine and
recover from errors made.
2. Affects of User Performance

The implication of a more simple user model has
direct effects on the performance of the user--particularly in
the case of the infrequent or novice user. This results in
increased learnability and ease of use. This streamlined
mental model is a direct result of an aligned task-to-device
mapping from the user's perspective, a reduced burden on the
working memory that maintains the load within the user's

56

capability, and the reduced number of recognize-act
requirements leading to production rule firings. The aligned
goal hierarchies of the user and the task result in marked
improvement in the following way. The goal hierarchies result
in knowledge being compiled into groupings which relate to one
another. As the user learns which actions are related to
others, the user compiles the production rules into one larger
production rule. When there is a high correlation between
tasks--i.e., the tasks have similar goal hierarchies--there is
a transfer of knowledge from one task to another [Ref. 12:pp
195). Similarly, user performance is improved by reducing the
load on working memory capacity. Working memory does have
limitations in that it relies on the strength of the
production rules in them. These rules acquire strength
through successive, successful application of the rule. 1t
the rule is weak or incorrect, the recognize-act cycle will
fire incorrect production rules. All of this can lead to the
following working memory failures; loss of declarative
knowledge, loss of a goal, or loss of a discriminating feature
of the production rule ([Ref. 12:pp 203]. Incorrect or
unnecessary production rules generated by the user can further
negatively impact the user’'s performance in that the user must
discriminate which of the production rules are the correct
ones--having multiple, uncompiled or weak production rules
within memory can only result in increased possibilities of

57

incorrect actions by the user and slower learning. Thus, a
more streamlined, simplified mental model may have significant
impacts on increased user performance.
3. Affects of Systems Design

Using the think-aloud protocol, in conjunction with
the formalized production rule framework as prescribed by
Kieras and Polson, provides the system designer with a new
tool to focus on in the design process. The usage of
framework in this context may allow the designer to shift his
focus early in the design phase to a thorough task analysis.
The early focus on empirical feedback from the users and their
perception of the device/task allows the designer to more
accurately specify the knowledge requirements prior to the
development of the system. Prototyping can begin at the
earliest phases of design as the designer can use paper mock-
ups of the proposed interface to observe users in the think-
aloud protocol and receive important input to achieving a
strong task-to-device mapping in the final : -oduct. This
lends itself well for the designer to achieve an iterative
design approach, while avoiding costly modifications to the
system. Additionally, the pinpointed problem area feedback
provided by this protocol provides a detailed evaluation of
the relative complexity of alternative designs--thus allowing
the designer to identify the trade-offs of design issues.
Based upon this type information, the designer may then be

58

able to design better documentation and training programs
which account for the trade-offs resulting from the final
design decisions [Ref. l4:pp 300].
4. Affects on Think-Aloud Methodology

The results of this study further substantiate the
effectiveness of the think-aloud protocol as a wuseful
evaluation technique for the designer. Furthermore, it 1is
particularly effective for wuse in conjunction with the
production system model for the following reasons. it
supports the development of production rules as it is the only
currently used methodology which provides a "genuine" user's
perspective of the user's task and device representations.
Both the goal hierarchies and the user's "how-it-works"
knowledge are more precisely defined. Thus, the task-to-
device representation becomes more accurate as opposed to the
designer's inferences of what the user was attempting to do.
According to Wright and Monk's 1991 study, designers are poor
at predicting exact problems which will surface in their own
system design [Ref. 13:pp 56]. It is therefore important that
the wuser's feedback be utilized because the baseline
production rule system predicted little significant difference
in the predicted cognitive complexity of the Command Language
and Direct Manipulation interfaces. And finally, this
methodology allows for a very small sample size--even one
user--to provide immediate and effective feedback--thus

59

allowing for minimal cost, in terms of both time and dollars,
evaluations which can be performed throughout the system life

cycle.

60

V. SUMMARY

The think-aloud protocol was used in this exploratory
study to demonstrate the effectiveness of Kieras and Polson's
theoretical model, GOMS and the Cognitive Complexity Model.
The results of the experiment provide further quantifiable
evidence that the use of this framework may be applied by
system designers to develop user interfaces that are more
easily learned and used.

To analyze the effectiveness of the GOMS and Cognitive
Complexity Model, an experiment comparing the cognitive
processes of users on two interfaces, the Command Language and
Direct Manipulation Interfaces, was conducted. Two groups of
users performed a set of five complex file management tasks on
their respectively assigned interfaces. As each user
performed the required tasks, the session was tape-recorded to
capture the verbalized thought processes of the users as they
"thought-aloud" through the execution of the task. Upon
completion of the eight tape-recorded sessions, each of the
tapes were transcribed and analyzed to develop both a goal
hierarchy and a production rule set for each task performed by
an individual user. A task-to-device mapping was performed to
determine the alignment of the users' perspective of the task
representation with that of the designer. Each of the mapping

61

sets for each task were then compared across interfaces to
determine which interface had better correlated task-to-device
mappings. Further, the production rule sets of each interface
were compared, by task against the baseline production rule
sets, to determine the relative complexity of each of the
interfaces.

The think-aloud process was chosen as the methodology for
conducting this experiment because of its insights of the
users perceptions of both the task and device representations.
Current evaluaticn techniques used in quantifying complexity
based on production rules rely on execution times and by
identifying the number and type of errors committed by the
user. This protocol provides detailed observations which, not
only pinpoint problem areas but, delineate why the problems
are occurring. This added why information strengthens Kieras
and Polson's theory of cognitive complexity by providing more
accurate goal hierarchies and task-to-device mappings.

Specifically, the experimer al results provide four
distinct implications for insight into the study of cognitive
processes are they are related to human-computer interaction.
First of all, the nature of the interface design influences
the users' mental models of a system. Secondly, the
complexity of the resulting mental model has a direct affect
on the user's performance on the given interface. This can be
measured by the number of production rules developed by the

62

user in task performance, the complexity of the production
rules generated, the completeness of the task-to-device
mapping, and the number of superfluous steps generated by the
user. Users with more complex mental models ¢of the system
create greater demands on working memory, leading to an
increased chance of error. The third implication of this
study is that the use of a formalized production rule system,
used in conjunction with the think-aloud protocol, may alter
and improve the design process of the user interfaces by
giving the designer specific feedback on design alternatives
early in the design process. Finally, the study lends further
support to the think-aloud protocol as a valid, effective tool
in assessing the cognitive ©process of human-computer

interaction.

63

10.

LIST OF REFERENCES

Coventry, Lynn, "Some Effects of Cognitive Style on
Learning UNIX," International Journal of Man-Machine
Interface, Vol 31, No 7, 1989, pp 349-365.

Kieras, David E. and Polson, Peter, "BAn Approach to the
Formal Analysis of User Complexity," International
Journal of Man-Machine Interface, Vol 22, No 4, April
1985, pp 365-394.

Margono, S. and Shneiderman, Ben, "A Study of File
Manipulation by Novices Using Commands vs. Direct
Manipulation,'" 26th A-nual Technical Symposium, June
1987, pp 154-159,.

Karat, J., Fowler, R., and Gravelle, M., "Evaluating User
Interface Complexity," Human Computer Interaction -
INTERACT '87, 1987, pp 489-495.

Te'eni, Dov, "Direct Manipulation as a Source of
Cognitive Feedback: A Human-Computer Experiment with a
Judgement Task," International Journal of Man-Machine
Interface, July 1990, pp 1-25.

Lewis, E., "Using the 'Thinking Aloud' Method 1in
Cognitive Interface Design," Lecture 28, Ann Arbor,
Michigan: The University of Michigan Chrysler Center for
Continuing Engineering Education, 1982, pp 1-16.

Card, Stuart K., Moran, Thomas P., and Newell, Allen, The
Psychology of Human-Computer Interaction, Lawrence
Erlbaum Associates, Publishers, 1983.

Kieras, David E. and Bovair, Susan, "The Rcquisition of
Procedures from Text: A Production-System Analysis of
Transfer of Training," Journal of Memory and Language,
Vol 25, 1986, pp 507-524.

Polson, Peter G. and Kieras, David E., "A Quantitative
Model of the Learning and Performance of Text Editing
Knowledge," CHI '85 Proceedings, April 1985, pp 207-212.

Bovair, Susan, Kieras, David E., and Polson, Peter G.,
"The Acquisition and Performance of Text-Editing Skill:

64

11.

12.

13.

1l4.

A Cognitive Complexity Analysis," Human Computer
Interaction, Vol 5, 1990, pp 1-48.

Deimel, Lionel (Editor), '"User Interface Development,"
Support Material for User Interface Development, Carnegie
Mellon University, SEI-CM-17-1.0, April 1988.

Anderson, John R., "Skill Acquisition: Compilation of
Weak-Method Problem Solutions,” Psychological Review, Vol
94, No 2, 1987, pp 192-210.

Wright, Peter C., and Monk, Andrew F., "The Use of Think-
Rloud Evaluation Methods in Design," SIGCHI Bulletin,
January 1991, pp 285-273.

Gould, John D., and Lewis, Clayton, '"Designing for
Usability: Key Principles and What Designers Think,"
Communications of the ACM, Vol 28, No 3, March 1985, pp
300-311.

65

10.

11.

BIBLIOGRAPHY

Anderson, John R., "Skill Acquisition: Compilation of
Weak-Method Problem Solutions," Psychological Review, Vol
94, No 2, 1987.

Bovair, Susan, Kieras, David E., and Polson, Peter G.,
"The Acquisition and Performance of Text-Editing Skill:
A Cognitive Complexity Analysis," Human Computer
Interaction, Vol 5, 1990.

Card, Stuart K., Moran, Thomas P., and Newell, Allen, The
Psychology of Human-Computer Interaction, Lawrence
Erlbaum Associates, Publishers, 1983.

Carroll, John M., and Mack, Robert L., "Learning to Use
a Word Processor: By Doing, By Thinking, and By
Knowing," Human Factors in Computer Systems, edited by

Thomas and Schneider, Ablex, Norwood, New Jersey, 1984.

Carrcll, John M., Interfacing Thought, MIT Press,
Cambridge, Massachusetts, 1987,

Coventry, Lynn, "Some Effects of Cognitive Style on
Learning UNIX," International Journal of Man-Machine

Interface, Vol 31, No 7, 1989.

Deimel, Lionel (Editor), "User Interface Development,"”
Support Material for User Interface Development, Carnegie
Mellon University, SEI-CM-17-1.0, April 1988.

Ericsson, K. Anders, and Simon, Herbert A., Protocol
Analysis: Verbal Reports as Data, The MIT Press,
Cambridge, Massachusetts, 1984.

Gould, John D., and Lewis, Clayton, "Designing for
Usability: Key Principles and What Designers Think,"
Communications of the ACM, Vol 28, No 3, March 1985.

Haas, Christina, "Does the Medium Make A Difference? Two
Studies of Writing With Pen and Paper and with

Computers," Human-Computer Interaction, Vol 4, No 2,
1989.
Jerrams-Smith, Jennifer, "An Attempt to Incorporate

Expertise about Users into an Intelligent Interface for

66

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

UNIX," International Journal for Man-Machine Interface,
Vol 31, 1989.

Karat, J., Fowler, R., and Gravelle, M., "Evaluating User
Interface Complexity," Human Computer Interaction -
INTERACT '87, 1987.

Kieras, David E., and Bovair, Susan, '"The Role of a
Mental Model in Learning to Operate a Device,'" Cognitive
Science, Vol 8, 1984,

Kieras, David E., "A Model of Reader Strategy for
Abstracting Main Ideas from Simple Technical Prose,"
Text, Vol 2, No 1-3, 1982.

Kieras, David, and Polson, Peter, "An Approach to the
Formal Analysis of User Complexity," International
Journal of Man-Machine Interface, Vol 22, No 4, April
1985.

Kieras, David E., and Bovair, Susan, "The Acquisition of
Procedures From Text: A Production-System Analysis of
Transfer of Training," Journal of Memory and Language,
Vol 25, 1986.

Kitajima, Muneo, "A Formal Representation System for the
Human-Computer Interaction Process," International
Journal of Man-Machine Interface, Vol 30, No 6.

Lewis, E., "Using the 'Thinking Aloud' Method 1in
Cognitive Interface Design," Lecture 28, Ann Arbor,
Michigan: The University of Michigan Chrysler Center for
Continuing Engineering Education, 1982.

Lewis, Clayton, and Gould, John D., '"Designing for
Usability: Key Principles and What Designers Think,"
Communications of the ACM, Vol 28, No 3, March 1985.

Margono, S., and Shneiderman, Ben, "A Study of File
Manipulation by Novices Using Commands vs. Direct
Manipulation," 26th Annual Technical Symposium, June
1987.

Polson, Peter G., and Kieras, David E., "A Quantitative

Model of the Learning and Performance of Text Editing
Knowledge," CHI '85 Proceedings, April 1985,

67

22.

23.

24,

Polson, Peter G., Muncher, Elizabeth, and Engelbeck,
George, "A Test of a Common Elements Theory of Transfer,k"
CHI '86 Proceedings, April 1986.

Te'eni, Dov, "Direct Manipulation as a Source of
Cognitive Feedback: A Human-Computer Experiment with a
Judgement Task," International Journal of Man-Machine

Interface, July 1990.
Wright, Peter C., and Monk, Andrew F., "The Use of Think-

Aloud Evaluation Methods in Design," SIGCHI Bulletin,
January 1991.

68

APPENDIX A

COMMAND LANGUAGE INTERFACE

YOUR NAME:
SMC NO:
I. INTRODUCTION

The exercise you are about to participate in involves
operating and evaluating a recently-developed computer file
management system. You will be asked to read a short
description of file management, followed by instructions for
each file management operation. You will then perform a
series of tasks that involve using the operations you have

learned.

PRIVACY ACT
The information accompanying this experiment will be used for

data collection and correlation purposes only. Information
provided is voluntary.

69

II. FILE MANAGEMENT SYSTEM

A. OPERATING SYSTEM

An operating system is the software program that makes
the hardware useable. The operating system can accomplish
many functions such as communicating between the user and the
computer (known as the user interface), sharing hardware among
users, allowing users to share data among themselves, and many

other functions.

An operating system's primary duty is to manage various
files. Before we go into the details of files, it 1is
important to understand the structure and organization of

files.

B. DIRECTORIES AND FILES

A software program usually consists of several files.
These files work together to produce the program that the user
sees and interacts with on the screen. A directory contains
all of the files used for a given prog.am. For instance, all
the files that operate the popular word processing program,
WordPerfect 5.1, might be located in a directory called WPS1.
It is also ©possible (and highly recommended) to have

70

subdirectories within a directory to segregate your f£files
further. For instance, in the WP51 directory you might have
a subdirectory titled WORK for all the files relating to your
work and one titled THESIS for all the files relating to your

thesis.

Figure 1 shows the relationship of this WPS1 directory to
its subdirectories and files, and also its relationship with
the top-level Root directory, often represented by a slash
(\). Two other directories at the same level as WP51 (here

called DOS and HG) also are shown, along with their files.

(rrir1v7—

FrrrT1T—
n
B

Pigure 1. Relationships of the WP51 Directory
with other Directories and Files.

71

It is often necessary to copy or move a file from one
directory to another. The operating system must provide
methods to move these files. For example, suppose you wrote

a paper for a National Security class titled The Middle East

and stored this file in the WORK directory under WP51. Later
in the year you decide to use this paper in your thesis and
need to transfer the file to the THESIS subdirectory. Some
form of move or copy command would allow you to transfer this
file. Additionally, you may want to change the file name to
Chapter I1. Again the operating system interface must provide

a means of doing so.

As mentioned earlier, directories contain related files.
The operating system interface also must provide a means to
manage directories. That is, commands such as create

directory and delete directory are needed.

III. OPERATING SYSTEM INTERFACE

The experimental operating system interface you will be

working with is a Command Language Interface, Figure 2. It

uses specific commands to perform an operation. The interface

72

contains three windows: Directory, File and Command windows.

A. Windows

1. Directory Window

The Directory Window provides a directory tree of all tle
subdirectories contained in a specified directory. 1f
insufficient space is provided in the window for the entire
directory tree, the user will be prompted to press M for the

remainder of the tree.

2. File Window

The File Window contains a listing of all the files in a
specified directory. The name of the directory appears in the
label for the File Window. 1If insufficient space is provided
in the window for all the files, the user will be prompted to

press M for additional files.

73

DIRECTORY WINDOW

—c—
o

T

FILE WINDOW

COMMAND WINDOW

COMMAND =>

Type 2 Conmand and press ENTER, or type EXIT 10 end seemon:

Figure 2. The Command Language
Interface Windows.

3. Command Window

The Command Winc:w allows the user to input specific
commands to .ne interface. Each command has a specific rntax
associated with it. If the command is typed incorrectly or
missing arguments, an error message will appear below the

command line indicating the reason for the error.

74

B. Commands

All commands available for the Command Language Interface
are identified below. Commands must be typed in lower case,
the <> 1indicates that the user provides a file name or
directory name. The <> are not to be typed. The path for a
file or directory is given using the \ and must be included in
the command. 1If a directory is not specified, the interface

will assume the root "\" directory is being referenced.

1. Copy File

A file can be copied from one directory to another using
the following command:
copyfile <directory\filename> to
<directory\filename>
with the user providing the path for the existing file and new

file.

2. Create Directory

A new directory can be created using the following

command:

createdir <directory\new directory name>

75

with the user providing the path and name for the new

directory.

3. Create File

A new file can be created using the following command:
createfile <directory\new file name>

with the user providing the path and name for the new file.

4. Directory Tree

A directory tree of a specified directory can be
displayed on the screen using the following command:
dirtree <directory>
with the user providing the path of the directory to be

displayed.

5. Help

The help command provides the user information regarding
the interface and any command. At the command line the user
can type help for general information or the following for
more specific information about a command:

help <command>

6. Listing Directory Files

76

The files for a specific directory can be displayed using
the following command:
listfiles <directory>
with the user providing the path for the directory to be

displayed.

7. Remove Directory

When a directory does not contain files nor
subdirectories, and is no longer needed, it can be deleted
using the following command:

removedir <directory>
with the user providing the path of the directory to be

deleted.

8. Remove File

A file can be deleted from a directory wusing the
following command:
removefile <directory\filename>

with the user providing the path of the file to be deleted.

9. Rename a File

A file can be renamed using the following command:
renamefile <directory\filename> to <directo~-y\new

filename>

77

with the user providing the paths for the old and new £file

names.

10. Sort Files

The files in the file window can be sorted by name, date
or size using the following command:
sortfile <directory> by date
sortfile <directory> by size
sortfile <directory> by name
with the user providing the path for the directory to be

sorted.

78

IV. YOUR TASK

You are participating in an experiment that is being
conducted to evaluate the interface of a recently developed
computer file management system. The purpecse of the
experiment is to determine the strengths and weaknesses of the
interface. You must perform a series of tasks using the
interface. BAs you perform these tasks, you will be reguired
to "think aloud"--that is, you will say aloud what you are
thinking about, any questions that you may have concerning the
task, or anything related to the system that may cause you
confusion. Throughout this period, your thoughts will be
recorded for later analysis. It is important to remember that
it is not your thought process that is being evaluated, but
rather the type of concerns you encounter while attempting to
learn and perform tasks using the file management system
provided. Although you have been asked to verbalize your
questions as they arise (and these question are vital to the
final evaluation of the system), it is important that you
realize that your questions probably will not be answered.
Finally, if you become absorbed in the performance of the task
and therefore stop verbalizing your thoughts, the observer
will provide prompting.

XXk STOP X%%

THE OBSERVER WILL ASSIST YOU IN PROCEEDING WITH THE EXPERIMENT

79

V. EXPERIMENT
Complete the following operations using the procedures
you have read about. Use the help screen as needed. Work at
a normal pace and as accurately as possible.
1. Find the file called plane and copy it to a file called
aircraft within the same directory.

2. Create a file called car in the ground directory and sort
ground files by file size.

3. Delete the planes directory.

4. Find the largest file of all the directories and rename
the file to large.fil.

5. The system supervisor informs wus that the ground
directory is a misnomer and should really be called the
fleet directory. Also, having a ground directory in the
system causes confusion among the staff. Rectify the
situation.

80

APPENDIX B

DIRECT MANIPULATION INTERFACE

YOUR NAME:

SMC NO:

I. INTRODUCTION

The exercise you are about to participate in involves
operating and evaluating a recently-developed computer file
management system. You will be asked to read a short
description of file management, focllowed by instructions for
each file management operation. You will then perform a
series of tasks that involve using the operations you have

learned.

PRIVACY ACT
The information accompanying this experiment will be used for

data collection and correlation purposes only. Information
provided is voluntary.

81

II. FILE MANAGEMENT SYSTEM

B. OPERATING SYSTEM

An operating system is the software program that makes
the hardware useable. The operating system can accomplish
many functions such as communicating between the user and the
computer (known as the user interface), sharing hardware among
users, allowing users to share data among themselves, and many

other functions.

An operating system's primary duty is to manage various
files. Before we go into the details of £files, it is
important to understand the structure and organization of

files.

cC. DIRECTORIES AND FILES

A software program usually concsists of several files.
These files work together to produce the program that the user
sees and interacts with on the screen. A directory contains
all of the files used for a given program. For instance, all
the files that operate the popular word processing program,
WordPerfect 5.1, might be located in a directory called WPS1.

It 1is also possible (and highly recommended) to have

&2

subdirectories within a directory to segregate your files
further. For instance, in the WPS51 directory you might have
a subdirectory titled WORK for all the files relating to your
work and one titled THESIS for all the files relating to your

thesis.

Figure 1 shows the relationship of this WP51 directory to
its subdirectories and files, and also its relationship with
the top-level Root directory, often represented by a slash
(\). Two other directories at the same level as WPS51 (here

called DOS and HG) alsoc are shown, along with their files.

I'T_T'I_T—J

Tt
3

Figure 1. Relationships of the
WP51 Directory with
other Directories and Files.

83

It is often necessary to copy or move a file from one
directory to another. The operating system must provide
methods to move these files. For example, suppose you wrote

a paper for a National Security class titled The Middle East

and stored this file in the WORK directory under WP51. Later
in the year you decide to use this paper in your thesis and
need to transfer the file to the THESIS subdirectory. Some
form of move or copy command would allow you to transfer this
file. Additionally. »u may want to change the file name to
Chapter 11. Again - s;perating system interface must provide

a means of doing so.

As mentioned earlier, directories contain related files.
The operating system interface also must provide a means to
manage directories. That 1is, commands such as create

directory and delete directory are needed.

III. OPERATING SYSTEM INTERFACE

The experimental operating system interface you will be
working with is called a Direct Manipulation Interface. It
uses the mouse device to "click" on to various icons,
directory names, or file names on the screen. BAn icon is a

graphical representation of an object or an operation. Once

84

activated, the icon carries out a specific function or
operation, such as copying a file from one directory to

another.

A. Mouse

The mouse (Figure 2) is the only input device you will be
using for this experiment. The keyboard will only be
operational when entering your name and SMC at the beginning
of the experiment.

Hold the mouse in the right hand (if right handed, left

hand if left handed) so that the cord and buttons are at the

top. Place your index and middle fingers lightly over the
mouse buttons. Gently guide the movement of the mouse with
the hand.

Normally, the mouse 1is represented as an arrow, or
cursor, on the screen which moves as you move the mouse. When
the system is performing an operation that takes longer than
one second, the cursor will appear as an hour glass to
indicate that the operation will take time. The cursor 1s not

furictional in the hour glass mode.

Gently press or "click" the left button to select the
1tem on the screen superimposed by the arrow or cursor. Click

85

the right button to call up a menu that describes operations
you can do in a given window. Each window has a menu assigned
to 1it. Most of the window menus are not operational.
However, the help, sort, tree, and error windows do have

operational menus.

Figure 2. Mouse Control Device

B. Windows

The Direct Manipulation 1Interface consi:ts of five
windows (Figure 3). These are (1) Directory Window, (2) File
Window, (3) File Sort Window, (4) New Name Window and (5) Icon
Window. Each window has a specific function and interacts
with the other windows by wuse of mouse operations.

Additiocnally, the Help and Tree windows will pop up onto the

86

screen when the icon that represents one of them is selected.

All windows have similar characteristics. The Top Pane
is the main window that includes all other windows and
encompasses the entire screen. The label of the top pane
contains the name of the interface or the name of a selected
directory. The Directory, File and New Name windows all
operate in a similar manner where the user selects an item.
The selected item will appear highlighted. Due
to the limited size of the windows, not all files, directories
or new names may fit in the window at one time. The window
operations provide the ability to scroll the window. Scroll
a window by pressing and holding the right mouse button
(cursor changes to a four directional arrow) in the window to
be scrolled. Move the cursor out of the window in the
direction of the additional names. The scroll bar to the
right of the window shows the status of the scrolling with
respect to the total list. The scroll bar only appears during

the scrolling operation.

1. Directory Window

The Directory window contains a list of all the
directories on the disk in alphabetical order. The

directories are indented to reflect the hierarchical or tree

87

]

f T
| | ONEW
| FILE SORT i i
| | | NAME |
i ; WINDOW ' vanoow |
| DIRECTORY ! i |
] WANDOW - I]
] !
! i
| | |
! i
@ | f!
| ICON !
: WINDOW %
| i
| ALE l
, WINDOW i
i
! |
| |
! |
(|

Figure 3. The Direct Manipulation Interface Top Pane
and Component Windows

structure. For example, each subdirectory will be indented

one space from the parent directory.

2. File Window

The name of the selected directory appears in reverse
video (black background, white lettering) in the Directory
window and the names of all files contained in the directory

are displayed in the File window. Files listed in the File

88

window are in alphabetical order. BAl]l operations on files

will be carried out using the file window.

3. File Sort Window

The File Sort window contains the names of all the files
listed in the file window, plus additional information about
these files. The File Sort window has two parts, a label and
a text portion. The label, i.e., Files Sorted by Name,
contains a menu which allows the files to be sorted by name,
date, or size. Items can be selected from this menu by
clicking the right mouse button when the arrow is over the
label and selecting with the left mouse button, the desired
sorting method. The File Sort window will then contain the

files of the selected directory sorted by the specified method

(see Figure 4).

4. New Name Window

The New Name window contains a list of all the names
needed for new files, renamed files, and directories. The new
name must be selected before an icon is selected to complete
an operation on a file, if that operation involves naming the
file. The system removes the selected new name after it has
been used.

89

b. Copy File Icon
The Copy File icon copies a selected file to the selected

directory using the selected name in the New Name window.

c. Rename File Icon
The Rename File icon renames a selected file to the

selected name in the New Name window.

d. Delete File Icon
The Delete File icon deletes the selected file from the

selected directory.

e. Create Directory Icon
The Create Directory icon c¢reates a new subdirectory
under the selected directory using the selected name in the

New Name window.

£. Directory Tree
The Directory Tree icon displays a graphical depiction of

the directories on the drive.

g. Delete Directory
The Delete Directory icon deletes the selected directory
from the disk. The selected directory can not contain files

nor subdirectories.

91

h. Help

The Help icon displays the help window described below.

6. Prompter Window

When you are performing a file or directory operation a
"prompter window" will appear. This window allows you to
confirm or cancel the operation. When this window appears,
click the right mouse button while the arrow is in the white
portion of the window (suggested file or directory name) to
call up the menu. Then select the "accept" or "cancel"” option
with the left mouse button. A prompter window also will
appear when you attempt to conduct an operation without having
specified all the necessary information. The needed
information will appear in the white portion of the window.
Remove the prompter window by selecting "cancel" from the

prompter menu.

7. Help Window

The Help window provides information on window
operations, icons, and window locations. The Help window can
be displayed by selecting the Help icon. Hold down the left
mouse button until a prompt appears for the left corner of the
help window. Move the pop-up window corner to the upper left

corner of the screen and release the mouse button. The lower

92

right corner of the window will appear and can be repositioned
with the mouse. Click the left mouse button when the size of

the window is at least five inches square.

The help commands appear in alphabetical crder. When a
command is selected, a description of the command wil!! be
provided in the right pane (text pane) of the window. The
command list and text pane can be scrolled in the manner
discussed earlier, press the right mouse button and drag the

cursor out of the pane in the direction of the unseen text.

8. Error Windows

Error windows can appear either as a Prompter window or
as a Pop-up window. A Prompter window will be a small window
with a short message. Selecting an icon without all the
necessary information specified will cause it to appear. It
can be removed by (1) selecting the right mouse button when
the cursor is located in the white portion of the prompter
(area of short message) to obtain the menu options and then

(2) selecting the '"cancel" option.

If you attempt an operation that the operating system
does not allow, an Error Pop-up window will appear in the

middle of the screen. The Label, located at the top, will

93

contain the error message. The remaining text portion of the
window may be confusing and not necessary for you to
understand. To remove the window, use the mouse's left button
and cursor to select a point outside the window, or select the
menu with the right mouse button in the Label and then the

"close" option with the left mouse button.

9. Directory Tree

A Directory Tree is helpful for seeing the '"whole
picture” of directories and subdirectories. Similar to the
Directory window, a subdirectory will branch off from its
parent directory. The Directory Tree window can be displayed
by selecting the Tree icon. Hold down the left mouse button
until a prompt appears for the left corner of the Tree window.
Move the pop-up window corner to the upper left corner of the
screen and release the mouse button. The lower right corner
of the window will appear and can be repositioned with the
mouse. Click the left mouse button when the size of the

window is approximately five to six inches square.

94

II. YOUR TASK

You are participating in an experiment that is being
conducted to evaluate the interface of a recently developed
computer £ile management system. The purpose o0f the
experiment is to determine the strengths and weaknesses of the
interface. You must perform a series of tasks using the
interface. As you perform these tasks, you will be required
to "think aloud"--that is, you will say aloud what you are
thinking about, any questions that you may have concerning the
task, or anything related to the system that may cause you
confusion. Throughout this period, your thoughts will be
recorded for later analysis. It is important to remember that
it is not your thought process that is being evaluated, but
rather the type of concerns you encounter while attempting to
learn and perform tasks using the file management system
provided. Although you have been asked to verbalize your
questions as they arise (and these question are vital to the
final evaluation of the system), it is important that you
realize that your questions probably will not be answered.
Finally, if you become absorbed in the performance of the task
and therefore stop verbalizing your thoughts, the observer
will provide prompting.

kk STOP Xk

THE OBSERVER WILL ASSIST YOU IN PROCEEDING WITH THE EXPERIMENT

95

V. EXPERIMENT

Complete the following operations using the procedures

you have read about. Use the help screen as needed. Work at

a normal pace and as accurately as possible.

-4

Find the file called plane and copy it to a €ile called
aircraft within the same directory.

Create a file called car in the ground directory and sort
ground files by file size.

Delete the planes directory.

Find the largest file of all the directories and rename
the file to large.fil.

The system supervisor informs us that the ground
directory is a misnomer and should really be called the
fleet directory. Also, having a ground directory in the
system causes confusion among the staff. Rectify the
situation.

96

(V8]

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002

Kishore Sengupta, Code AS/SE
Naval Postgraduate School
Monterey, California 93943

Tung Bui, Code AS/BD
Naval Postgraduate School
Monterey, California 93943

Barbara Treharne

HQ's, U.S. Military Academy
West Point, New York 10996

97

r

